首页> 外文OA文献 >Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon
【2h】

Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

机译:熔融月牙变石的直接电解,在月球上产生氧气和金属

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.
机译:当考虑建造月球基地时,将材料运输到月球表面的高昂成本(每公斤100,000美元)是一个重大障碍。因此,原地资源利用将是任何登月任务的关键组成部分。氧气是一种重要资源,在地球上非常丰富,而在月球上却不存在。如果可以在月球上产生氧气,这将带来双重好处。不仅不再需要出于呼吸目的将其运输到地面;而且它也可以用作燃料氧化剂,以更便宜的价格支持机组人员和其他物质在月球表面和近地轨道之间的运输(大约$ 20,000 / kg)。为此,需要一个稳定,坚固(轻载)的系统来从月球资源中产生氧气。在本文中,我们研究了通过直接熔融的月牙石的电解产生氧气的可能性,该氧气几乎占了月球重量的一半,从而实现了可产生氧气的产生,同时在阴极上主要通过紧密结合产生铁和硅氧化物。硅酸盐混合物(其成分和机械性能与月球长石的组分相同)在接近1600°C的温度下熔融。使用惰性阳极和合适的阴极,对熔融硅酸盐进行直接电解(无支持电解质),从而进行生产阴极处的熔融金属产品和阳极处的氧气。研究了阳极材料,扫描速率和电解质组成对电化学行为的影响,并考虑了扩大规模的意义。测定候选阳极材料的活性和稳定性以及电解质组合物的作用。此外,还进行了阳极气体的异位捕获和分析,以计算在不同电压,电流和熔融化学作用下的电流效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号